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Problem formulation

Derivative-Free Optimization with Unrelaxable Integers
minimize f(S(x)) subject tox € X C Z” x R
X

1. Evaluation involves S(x) numerical simulation (computationally
expensive)

> derivatives VS unavailable or expensive to compute
> single evaluation of S(x) can take minutes/hours/days

2. Unrelaxable integers, e.g. # receiver panels
» Unrelaxable: simulation cannot run at fractional values!



Background

Some applications

>
|

Design of concentrating solar power plants (Pascal et al, 2011)

Performance tuning codes on high-performance computers
(Balaprakash et al, 2014) etc.

Addressing integer variables

2

\4

heuristic approaches: rounding integer variables (Mueller et al,
2013)

patten-search methods (Abramson et al, 2008; Audet et al, 2001)
definitions of minimizers and deficiencies (Newby and Ali, 2015)

primitive directions and nonmonotone line searches with integer
variables (Liuzzi et al, 2018)

no outer approximation (VS is unavailable)

no branch-and-bound (unrelaxable integer constraints)
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Pattern search

Proposed by Audet & Dennis (2001):
» User-defined discrete neighborhood
» Declare “mesh-isolated minimizer” if no local improvement

> Any (y1,y») € Z? with 2y; = y» is optimal
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Discussion

Can we guarantee a global minimizer of a convex f(x) when x is
integer?
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Primitive directions

2e . .
B 2

se

3

n=2 n=3 n=4 n=>5
kKl #[ 1] #] Q] # 9 | #
1 9| 8 27 26 81 80 243 242
2| 25|16 | 125 98 625 544 | 3,125 2,882
3| 49 | 32| 343 | 290 | 2,403 | 2,240 | 16,807 | 16,322
41 81|48 | 729 | 578 | 6,561 | 5,856 | 59,049 | 55,682

Table: Number of primitive directions, # = |N(xc, 1)|, that emanate from the
origin xc of the domain Q = [k, k]” N Z" and that correspond to points in Q.
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minimize f(x), subject to x € Z"
X

and assume f(x) convex

... underestimator for convex, integer DFO!
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Underestimating 1

Formulate piecewise underestimator as MILP
> Interpolation points: X := {x' € Z"}, [ X| > n+1
> Function values: ' := f(x') for x' € X

> i=(i,..., in+1) multi-index for n+ 1 distinct j; € i with
1<, <...,fn+1§ |X|

Interpolation Cuts

For X1 := {x":jj €i} obtain cut (AN Tx + bl
...only valid in cones ...by solving linear system:

|-
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Underestimating 1

Lemma: Underestimating Property

f(x) convex and Xi= {x, ..., x™1} poised, then if follows that

. . . n+1 ) .
f(x) > (M x+ b Vxe U= Ucone (X'f—X'>.
Jj=1

where cone (xif - X i) is the cone with vertex xi € X1 & rays x/ — xi:

AL:\'Q* 11 of 17
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Solving the subproblem - MILP formulation

Modeling membership in cones

> Binary 70 = 1 if and only if x € cone (x/ — X1) , for j €
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Solving the subproblem - MILP formulation

Modeling membership in cones
> Binary 70 = 1 if and only if x € cone (x/ — X1) , for j €
. . n+1 )
> Cutn > (') x+b' = My(1 =D 2") for big-M; > 0
j=1
» SOS-1 constraint: at most one cone, zi < 1, active
» Any point x is linear combination of extreme rays (W/(X) set of all
poised subsets)
x=xV 4N (XD = X", Vi€, Vie W(X)
=1
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.
Solving the subproblem - MILP formulation

Modeling membership in cones
> Binary 70 = 1 if and only if x € cone (x/ — X1) , for j €
. - I7+1 B
> Cutn > (') x+b' = My(1 =D 2") for big-M; > 0
j=1
» SOS-1 constraint: at most one cone, zi < 1, active

» Any point x is linear combination of extreme rays (W/(X) set of all
poised subsets)

n+1 ) . )
x=xV 4N (XD = X", Vi€, Vie W(X)
=1

I
> Indicate x € cone (x’l - Xi) by making A/ > — M, (1 — z¥)

...models z/ = 1 = x € cone (X"f - X') for j; € i ...reverse harder
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An alternative master problem
Challenges of MILP Master model

» MILP model exponential in number of interpolation points
» MILP representation is very weak: uses big-M and tiny-¢

= Commercial solvers cannot solve large instances

S 13 of 17



An alternative master problem
Challenges of MILP Master model

» MILP model exponential in number of interpolation points
» MILP representation is very weak: uses big-M and tiny-¢

= Commercial solvers cannot solve large instances

—Binary Vars
10° | |=——Cont. Vars
Constraints

First 12 instances of
1041 ] MIP model while
minimizing the
convex quadratic

103 1 abhi on
Q=[-22Pnz3

Count

102

2 4 6 8 10 12
Iteration
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An alternative master problem

Replacing CPLEX Solve by Look-Up Table
> Key idea: work in space of original integers, x € Z"
(no additional variables or constraints)
» Replace MILP by look-up-table of underestimator

» Update look-up-table when new points (and therefore new cuts)
are available
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An alternative master problem

Replacing CPLEX Solve by Look-Up Table
> Key idea: work in space of original integers, x € Z"
(no additional variables or constraints)
» Replace MILP by look-up-table of underestimator

» Update look-up-table when new points (and therefore new cuts)
are available

Dense/small linear algebra solves = Fast ... but not fast enough
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xieX
while f > minn do
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Algorithm 1: Look up algorithm
input: Lower bound n for each point in Q; Points X with
IX|>n+1; f= mi)r} f(x)
X €

while f > minn do
Generate a sufficient set C of subsets of n+ 1 points
foric C do

[Q. Rl =ar([e X"])

if X' is poised using R then
Find points in Q in one of the cones of X' using @
Update 7 using Q where n < f

Add x¥ = argminn and update f
xeQn<f

Question

Given a set of points X on the integer lattice, is there a way to
generate all subsets of size n + 1 without another in the interior?
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Benchmarking on 24 convex problems
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Benchmarking on 24 convex problems
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Future

Better approach for determining important cuts using information in
both f- and x-space? (We aren’t using convexity as much as possible.)
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10%F —=—Total combinations
i —@—Poised combinations
—A—Updating cuts
—w—Pruning cuts
102

Count

. . A
0 5 10 15 20 25
Iteration

Minimizing f(x) = ||x||3 on [—4, 4] |JZ3.
(729 points, 578 primitive directions emanating from origin.)
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Future

Better approach for determining important cuts using information in
both f- and x-space? (We aren’t using convexity as much as possible.)

How to certify (local) optimality when f is nonconvex?
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